bokee.net

教师博客

正文 更多文章

谈高三数学学习方法

进入高三就意味着高考的来临,为实现升学的美好理想,高三一年的学习质量是关健,因此不仅要有信心和毅力,更要有科学有效的学习方法,它就象杠杆一样,能起到事半功倍的效果. 一、用好课本.有的同学说:课本有什么好看的?还不就是几个定义、定理、公式?孰不知,就是那么几个定义、定理、公式,却以其深刻严谨的思想内涵,筑起了一幢幢数学大厦,而对数学学习感到困难者,通病之一就是对它缺乏透彻而全面的理解和掌握.所以,全面、深刻地理解和掌握定义、定理、公式是搞好复习,提高成绩的一项重要任务.要用好课本应侧重以下几个方面.
1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念.如以的概念为例,课本中出现了不少种,如直线的倾斜角,两条异面直线所成的角,直线与平面所成的角,向量夹角等,它们从各自的定义出法,都有一个确定的取值范围.如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的唯一性.对此理解、掌握了才不会出现概念性错误.
2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围.如用均值不等式求最值,必须满三个条件,缺一不可.有的同学之所以出错误,不是对均值不等式的结构不熟悉,就是忽视其应满足的条件..如数列中的前n 项和与无穷数列各项和SS=)含义是不同的,等等.
3.掌握典型命题所体现的思想与方法.如对等式的证明方法,就给大家提供了求二项式进入高三就意味着高考的来临,为实现升学的美好理想,高三一年的学习质量是关健,因此不仅要有信心和毅力,更要有科学有效的学习方法,它就象杠杆一样,能起到事半功倍的效果. 一、用好课本.有的同学说:课本有什么好看的?还不就是几个定义、定理、公式?孰不知,就是那么几个定义、定理、公式,却以其深刻严谨的思想内涵,筑起了一幢幢数学大厦,而对数学学习感到困难者,通病之一就是对它缺乏透彻而全面的理解和掌握.所以,全面、深刻地理解和掌握定义、定理、公式是搞好复习,提高成绩的一项重要任务.要用好课本应侧重以下几个方面.
1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念.如以的概念为例,课本中出现了不少种,如直线的倾斜角,两条异面直线所成的角,直线与平面所成的角,向量夹角等,它们从各自的定义出法,都有一个确定的取值范围.如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的唯一性.对此理解、掌握了才不会出现概念性错误.
2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围.如用均值不等式求最值,必须满三个条件,缺一不可.有的同学之所以出错误,不是对均值不等式的结构不熟悉,就是忽视其应满足的条件..如数列中的前n 项和与无穷数列各项和SS=)含义是不同的,等等.
3.掌握典型命题所体现的思想与方法.如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法.
如已知(1-2xn= a0 + a 1x+ a2 x 2+…+ a nx2 ,那么a0 + a1 + a 2+…+ an = |a0| +|a1| +|a2| +…+|an|= . 如(x +1)(x +1) (x +1) …(x +1) 的展开式所有项的系数之和为.
因此,端正思想,认真看书,全面掌握,并结合其它资料和练习,加深对基础知识的理解,从而为提高解题能力打下坚实的基础.
二、上好课.同学们学习的主阵地是课堂,课堂的学习质量是影响学习成绩的关一环.
1.会听课.有的同学会说:谁还不会听课?其实不然.会听课就是要积极思考.当老师提出问题后,就要抢在老师前面思考怎么办?想一想解决这个问题的所有可能的途径和方法,然后在和教师讲的去比较,可能有的想法行有的不行,可能老师的方法更好,可能你的方法还简明、还奇妙.而不要等老师一点一点告诉你,自己仅仅是听懂了就认为学会了,这实际上是只得怀疑的.难怪不少同学说老师一讲就会,自己一做就错,原因是自己没有真正去思考,也就不可能变成自己的东西.所以积极思考是上好课最为重要的环节,当然也学习的主要方法.
2.做笔记.上课老师讲的含有重要概念,各种问题常规思想与方法,易错的问题,以及一些很适用的规律和技能等,所以,上课做好笔记是必要的.
3.要及时复习.根据记忆规律,复习应及时,每天一复习,一周一复习,每单一总结为好.
.多做题.学数学离不开做题,高三学习更要做题,不做一定量习题是不可能学好数学的,但是要注意以下几个问题:
1.难度适当.现在复习资料多,题多,复习时应按老师的要求.且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失.因此,练习时应从自已的实际情况出发,循序渐进.应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质
2.题贵在精.在可能的情况下多练习一些是好的,但贵在精.首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现三基,体现通性、通法”.其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程.第三对重点问题要舍得划费时间,多做一些题.第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一.
3.重视改错.有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,尤其老师已经批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意.只有经过不断的改正错误,日积月累,才能提高.
4.注意总结.不仅包括题型、方法、规律的总结,还要掌握一些基本题.如立体几何中有这样一道:AC和平面所成的角是,AC平面内ACAB的射影AB成角,设BAC= ,求证:cos cos =cos .这个等式为立体几何中某此题的计算带来了方便.
如对函数f(x)=x+1/x 的奇偶性、单调性、极值和图象应熟悉,利用它给求某些解析式的最值带来了方便.
.搞好每一阶段的复习.进入高三后基本上就开始复习了,要服从老师的计划和安排,扎扎实实完成每一阶段的任务,不能急于求成.一般分为四个阶段.
1.第一阶段是系统复习.时间大约7个月.重点是全面复习,侧重基础,即按章节进行,以三基为核心,系统而全面地弄清每一个知识点,熟练掌握通性、通法,并注重知识体系的形成.
三基是指数学的基础知识、基本技能和基本方法.三基的掌握需要一个过程,必须经过适量、适当的训练才能达到.因此,应养成一种好的学习习贯,把每一次练习都当成一次学习、巩固的机会,一看到问题就上联想这类问题所涉及的相关知识点和解决它的通法,逐渐对三基的掌握达到自动化,能随时拈来.
如一遇到求二面角问题马上就想到其基本方法:一是利用面积射影公式cosα= ; 二是求其平面角,而找平面角的方法有三:定义法;三垂线定理或定理;作棱的垂面.其中最重要的是三垂线定理或定理,而该定理最重要是平面的垂线.这样就能从整体把握问题,很快切入,顺利求解.
注重知识体系的形成.三基的复习,不是简单的重复,加强记忆,重要的是要深化认识,从本质上发现数学知识之间的联系,从而加以分类、整理、综合,逐渐形成一个条理化,秩序化、网络化的有机体,正真实现由厚到薄.
注意数学能力的提高.通过大量的解题练习,应在运算能力,逻辑思维能力,空间想象能力,利用所学知识分析问题和解决问题的能力等方面得到提高.
注意思想方法的应用.著名数学家波利亚指出:完善的思想方法,犹如北极星,许多人通过它而找到正确的道路.”说明掌握思想方法是何等的重要.如某些比较得杂的代数问题如果利用数形结合的方法来做,就能轻松遇快地解决.
2.第二阶段是重点复习.时间大约为一个月.重点是以提高三性,即知识与能力的综合性、应用性和创新性.这是几年以来考题的改革方向.经过第一阶段的复习,同学们对三基的掌握已经达到了一定的程度,接下来老师就要给同学们组织一些专题了.包括:
知识内在联系型专题,如:函数、方程、不等式专题;函数与数列专题;函数图象与方程的曲线专题等.
思想方法类专题,如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想;运动与变换的思想方法;转化与化归的思想方法等.
应用问题专题.进一步加强各种类型应题的练习,提高阅读理解、建立数学模型的能力.
创新思维专题.加强思维训练,在通性、通法的基础上进行创造性思维,体现多一点,少一点算或不急于算.
同学们再努力,抓住机会,这一阶段搞好了会在知识与能力上有一个较大提升!
3.第三阶段是综合练习.时间大约半月.重点是提高应试水平.通过综合试卷的反复练习,应在答题策略、时间分配,尤其是读题时的一次性感觉、一次性切入、一次性成功上加强训练.
4.第四阶段是保温和自由复习阶段.保持良好精神状态和平静的心理,坚信自己的实力,满怀信心迎接高考.
总之,同学们要坚定信心,脚踏实地按照老师的要求并结合自己情况认真去做,采用科学的学习方法,持之一恒,一定能取得优异的成绩.
 
 
 
 
分享到:

上一篇:师生关系中常见的沟通错误和障碍

下一篇:解析几何的产生

评论 (3条) 发表评论

  • 晓晓
    晓晓 : 基本知识点的把握: 首先要改变观念,初中知识点大多都比较浅显,通过考前很短时间的突击复习就能有不错的效果,而高中知识点大多比较抽线复杂,非有系统的学习和思考想透彻把握是不可能的,因此在学习时,要注重对基本知识点的学习,注意知识点间的前后联系,且要注意如何将其应用到试题中,因为再复杂的题目也是由基本知识点来解答的,只要能达到对基本知识点活学活用的程度,再加上正确的思考方式,成功做出是没问题的。

    2012-01-24 01:01

  • 晓晓
    晓晓 : 各类题目的解法: 从数学高考试卷的不同体系位提出了一套系统的行之有效的学习复习方法: ①选择题的:选择题得分关键是考生能否精确、迅速地解答。数学选择题的求解有两种思路:一是从题干出发考虑,探求结果;二是题干和选择的分支联合考虑或从选择的分支出发探求是否满足题干条件,由于答案在四个中找一个,随机分一定要拿到。选择题解题的基本原则是:“充分利用选择题的特点,小题尽量不要大做”。 ②填空题:填空题答案有着简短、明确、具体的要求,解题基本原则是小题大做别马虎,特别是解的个数和形式是否满足题意,有没有漏解和不满足题目要求的解要认真区别对待。填空题得分情况对高考成绩大有影响,所以答题时要给予足够的精力和时间,填空的解法主要有:直接求解法、特例求解法、数形结合法,解题时灵活应用。 ③解答题:解答题得分的关键是考生能否对所答题目的每个问题有所取舍,一般来说在解答题中总是有一定数量的数学难题(通常在每题的后半部分和最后一、两题中),如果不能判别出什么是自己能做的题,而在不会做的题上花太多的时间和精力,得分肯定不会高。解答题解题时要注意:书写规范,各式各样的题型有各自不同的书写要求,答题的

    2012-01-24 01:00

  • 晓晓
    晓晓 : 数学中的方法 老师介绍到,尽管在高考的所有科目中,数学一直是考生觉得拉分的科目。其实,只要有一套合理的学习方法,数学成绩的提高就不是那么可怕了。首先高中数学学习方法中经常会用到的几种方法: ①数学中的一般方法:例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在学生今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)等.这些方法极为重要,应用也很广泛。 ②逻辑学中的方法:例如分析法(包括逆证法)、综合法、反证法、归纳、类比、推广、化归、穷举法(要求分类讨论)等。这些方法既要遵重逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色。 ③数学中的特殊方法:例如配方法、待定系数法、加减法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,对于某一类问题也都是一种通法。

    2012-01-24 00:58

发表评论
验证码